Close Tue:
Close Thu:
Close Tue, May 16:
14.7(2),15.1
15.2, 15.3 (integrating!)
15.4, 15.5 (finish early)

Exam 2, May $16^{\text {th }}$
Office Hours Today: 1:30-3:00pm (Smith 309)

15.1-15.3 Intro to double Integrals

Goal: Give a definition for the volume between a given surface and a given region on the $x y$-plane.
In all of ch. 15, you are given two things:

1. A surface: $z=f(x, y)$
2.A region drawn on the $x y$-plane.

Example:

Consider the volume under the surface

$$
z=f(x, y)=x+2 y^{2}
$$

and above the rectangle $R=[0,2] \times[0,4]=\{(x, y): 0 \leq x \leq 2,0 \leq y \leq 4\}$
(a) Draw the region R in the $x y$-plane and break it into 4 sub-regions; $\mathrm{m}=2$ columns and $\mathrm{n}=2$ rows.
(b) Approximate using a rectangular box over each region.

Formally, we define:
$\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}, y_{i j}\right) \Delta A$ $=$ the `signed' volume between $f(x, y)$ and the $x y$-plane over R.
If $f(x, y)$ is above the $x y$-plane it is positive. If $f(x, y)$ is below the $x y$-plane it is negative.

General Notes and Observations:
$z=f(x, y)=$ height on surface
$R=$ the region on the $x y$-plane
$\Delta A=$ area of base $=\Delta x \Delta y=\Delta y \Delta x$ $f\left(x_{i j}, y_{i j}\right) \Delta A=$ (height)(area of base) $=$ volume of one approximating box

Units of $\iint_{R} f(x, y) d A$ are
(units of $f(x, y)$)(units of x)(units of y)

$$
\begin{gathered}
\iint_{R} 1 d A=\text { "Area of } \mathrm{R} ", \text { and } \\
\frac{1}{\text { Area of } \mathrm{R}} \iint_{R} f(x, y) d A=\text { "Average value } \\
\text { of } \mathrm{f}(\mathrm{x}, \mathrm{y}) \text { over } \mathrm{R} "
\end{gathered}
$$

15.2 Using Iterated Integrals to Compute If you fix x :
The area under this curve is given by

From Math 125,
$\operatorname{Vol}=\int_{a}^{b} \operatorname{Area}(\mathrm{x}) d x=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x$
$\mathrm{Vol}=\int_{c}^{d} \operatorname{Area}(y) d y=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y$
If you fix y : The area under this curve is given by

$\int_{a}^{b} f(x, y) d x=$| "cross sectional area |
| :---: |
| under the surface at |
| this fixed y value" |

號

Examples (like 15.2 HW):

1. Find the volume under $z=x+2 y^{2}$ and above the rectangular region $0 \leq x \leq 2, \quad 0 \leq y \leq 4$
2. $\int_{0}^{3} \int_{0}^{1} 2 x y \sqrt{x^{2}+y^{2}} d x d y$
3. (these are directly from HW):
(a) Find the volume of the solid that lies under the elliptic paraboloid

$$
x^{2} / 9+y^{2} / 16+z=1 \text { and above }
$$ the rectangle $R=[-1,1] \times[-3,3]$.

(b) Find the volume of the solid in the first octant bounded by the parabolic cylinder $z=4-x^{2}$ and the plane $y=1$
(c) Find the volume of the solid enclosed by the paraboloid

$$
z=2+x^{2}+(y-2)^{2} \text { and the }
$$

$$
\text { planes } z=1, x=-2, x=2, y=0, y=3 .
$$

4. Find the double integral of

$$
f(x, y)=y \cos (x+y)
$$

over the rectangular region
$0 \leq x \leq \pi, \quad 0 \leq y \leq \pi / 2$

15.3 Double Integrals over General Regions

For the rectangular region, R, given by

$$
a \leq x \leq b, \quad c \leq y \leq d
$$

we learned:

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x \\
& =\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
\end{aligned}
$$

In 15.3, we discuss regions, R, other than rectangles.

Type 1 Regions (Top/Bot)	Type 2 Regions (Left/Right)
Given a particular x in the range, a $\leq \mathrm{x} \leq \mathrm{b}$, we have $\mathrm{g}_{1}(\mathrm{x}) \leq \mathrm{y} \leq \mathrm{g}_{2}(\mathrm{x})$	Given a particular y in the range, $\mathrm{c} \leq \mathrm{y} \leq \mathrm{d}$, we have $\mathrm{h}_{1}(\mathrm{y}) \leq \mathrm{x} \leq \mathrm{h}_{2}(\mathrm{y})$
$\int_{a}^{b}\binom{g_{2}(x)}{\int_{g_{1}(x)} f(x, y) d y} d x$	$\int_{c}^{d}\left(\begin{array}{l}h_{2}(y) \\ h_{1}(y)\end{array}\right.$

The surface $z=x+3 y^{2}$ over the rectangular region $R=[0,1] \times[0,3]$

The surface $z=x+3 y^{2}$ over the triangular region with corners $(x, y)=(0,0),(1,0)$, and $(1,3)$.

The surface $z=x+1$ over the region bounded by y $=x$ and $y=x^{2}$.

The surface $z=\sin (y) / y$ over the triangular region with corners at $(0,0),(0, \pi / 2),(\pi / 2, \pi / 2)$.

Examples:

1. Let D be the triangular region in the xy-plane with corners $(0,0),(1,0),(1,3)$.

Evaluate $\iint_{D} x+3 y^{2} d A$
2. Find the volume of the solid bounded by the surfaces $z=x+1, y=x^{2}, y=2 x, z=0$.
3. Draw the region of integration for

$$
\int_{0}^{\pi / 2} \int_{x}^{\pi / 2} \frac{\sin (y)}{y} d y d x
$$

then switch the order of integration.
4. Switch the order of integration for

$$
\int_{0}^{4} \int_{\sqrt{x}}^{2} \sin \left(y^{3}\right) d y d x
$$

An applied problem:

Your swimming pool has the following shape (viewed from above)

The bottom of the pool is a plane with depths as indicated (the pool gets deeper in a linear way from left-to-right)

Solution:

1. Describe the surface (what is z ?):

Slope in y-direction $=0$
Slope in x-direction $=-4 / 10=-0.4$
Also the plane goes through ($0,0,0$)
Thus, the plane that describes the bottom of the pool is: $\quad \mathbf{z}=\mathbf{- 0 . 4 x}+\mathbf{0 y}$
2. Describe the region in $x y$-plane:

The line on the right goes through $(20,0)$ and $(25,25)$, so it has slope $=5$ and it is given by the equation

$$
\begin{array}{ll}
& y=5(x-20)=5 x-100 \\
\text { or } \quad & x=(y+100) / 5=1 / 5 y+20
\end{array}
$$

The best way to describe this region is by thinking of it as a left-right region.
On the left, we always have $x=0$
On the right, we always have $x=1 / 5 y+20$
Therefore, we have

$$
\int_{0}^{25}\left(\int_{0}^{\frac{1}{5} y+20}-0.4 x d x\right) d y=-741 . \overline{6} \mathrm{ft}^{3}
$$

